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1.1 Implementing Parallel Algorithms on 

Contemporary Hardware 

 

Communication mechanisms within concurrent

computer systems are extremely hostile to

optimizing compilers. Also vector machines have

fundamental performance bottlenecks [33][35]

and their sustained average performance is by

several orders of magnitude lower, than their peak

rate [15, 33], even when creative coding

techniques help the compiler [34]. VLIW (Very

Long Instruction Word) architectures [11, 7] are

much more optimizer-friendly by lower level of

parallelism (at instruction level) [4, 27, 14] and

relatively good optimization results have been

reported for systolizable algorithms [4], but only

for algorithms with only locally regular data

dependencies (systolic algorithms or systolizable

algorithms). VLIW architectures still have

substantial drawbacks. 

Also data flow machines are optimizer-

hostile, since indeterministic operation does not

permit compile-time optimization. Data flow

machines throughput is also affected by other

drawbacks: several new kinds of bottlenecks have

been introduced. Code causes an enormous

addressing overhead and data accessing conflicts

[13]. 

A higher degree of parallelism may be

achieved by Application-specific Array

Processors (ASAPs). Even ASAPs have

substantial draw-backs: extensive I/O overhead is

caused by scrambling and unscrambling of data

streams, expensive design of special hardware is

required. A more important drawback is, that only

algorithms with locally regular data dependencies

(systolic or systolizable algorithms, see [32] and

others) are supported. This drawback also holds

for parallel computer architectures for systolic
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. This paper introduces a novel (non-von
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porting a much more efficient implementation of

parallel algorithms. Acceleration factors of up to
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applications - although using a hardware being
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processing examples. 

 

Key Words:

 

 data-driven, ultra micro parallelism,

sparse control, fine granularity scheduling, control

overhead, high level synthesis.

 

1. Introduction

 

For a number of real-time applications extremely

high throughput (up to several kiloMIPS) is needed

at very low hardware cost. For at least another

decade this mostly will be possible only with

dedicated hardware, but not with programmable

von-Neumann-type universal hardware. Even

technologically advanced processors very often

will be still too slow and/or to expensive. Also

parallel or concurrent computers do not meet the

requirements, or, are by far too expensive. Their

sustained average performance is by orders of

magnitude lower, than the peak rate. The reason is,

that communication mechanisms offered by this

hardware are not sufficiently powerful and/or too

inflexible: the hardware is compiler-hostile, since

most of the dense data dependencies of parallel

algorithms cannot be mapped onto it. Next section

gives more details.



 

emulation [37].

 

1.2 Data-driven Ultra Micro Parallelism

 

A more detailed comparative analysis has been

published elsewhere [26]. We strongly believe in

the following fundamental requirements to avoid

most of these problems, to obtain sufficiently

optimizer-friendly hardware, to avoid most of the

massive overhead caused (within software and

hardware) by von Neumann principles. To obtain

sufficiently flexible communication mechanisms

parallelism should be implemented at a level much

lower than usual: (1) below instruction level (ultra

micro parallelism). Optimization (parallelization)

should be based on very fine granularity resource

allocation and scheduling (2) - determined at

compile time to a much larger extent than usual (3).

The paradigm should be deterministically data-

driven (4).

The non-von Neumann xputer paradigm being

introduced in this paper is an approach into this

direction. Its novel processor organization (and its

hardware implementation) supports parallel

algorithms in a drastically more efficient way by

avoiding overhead via residual control (which we

also call sparse control), very fine granularity intra-

ALU parallelism (which we call ultra micro

parallelism) and deterministic data scan cache use.

It is based on data sequencing (in contrast to the

control flow sequencing paradigm of von Neumann

machines), so that also optimization methods based

on data-dependencies are efficiently supported.

We are not aware of any other development of

programmable hardware machine principles,

which yields such a good utilization of hardware.

In many DSP and image processing applications

xputer use can avoid the need for special DSP

processors or expensive image processing

computers.

 

1.3 Technology-independent Cost / 

Performance Evaluation 

 

Encouraging performance results (fig. 1) have

been obtained experimentally on the MoM xputer

architecture at Kaiserslautern [25, 6] showing,

that in several important applications a single

xputer processor may even outperform larger

parallel computer systems. A computer-to-xputer

performance comparison seems to be the best

possible way to evaluate the merits of these

results. Since an xputer does not have a hardwired

“instruction set”, it does not make sense to use

MIPS, normally used for computer-to-computer

comparison - to indicate the progress of

technology and physical design, rather than the

efficiency of machine principles. But also other

computational devices benefit from progress of

technology. That’s why we prefer the technology-

independent measure of acceleration factor

obtained experimentally (fig. 1) from two

equivalent implementations of the same algorithm

(compare fig. 15): one from a computer (VAX-11/
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Figure 1:

 

 Acceleration factors by single processor MoM xputer - compared to a VAX-11/750.
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 Figure 2: Computers vs.xputers. basic structure: a) computers, b) xputers; causality in c) 

computers, d) xputers.



 

750) and one from the technologically comparable

MoM xputer [25]). We also have found out, that for

computed acceleration factor estimates a good

model is obtained from comparing the total number

or duration of primary memory cycles.

Another important measure is the r-ALU size

depending on the computation needed for a

particular application and on the number of

applications resident simultaneously. A rough

measure of expense is the number of PLDs needed

of a particular type. PLDs (programmable logic

devices) are available commercially from a billion

US-dollar world market. Fig. 1 shows some such

expense figures obtained experimentally on the

MoM [25] xputer with code from an optimizing

compiler having been implemented and tested at

Kaiserslautern [6].

 

2. Xputer Machine Organization

 

For clarification xputers are compared to

computers. The ALU of computers is a very

narrow bandwidth device: it can carry out only a

single simple operation at a time. Xputers,

however, use a PLD-based r-ALU ([25] fig. 2 b),

reconfigurable such, that several highly parallel

data paths form also powerful compound

operators, which need only a few nanoseconds per

execution, due to highly parallel dedicated intra-

chip read / modify / write interconnect between

register files (scan caches) and r-ALU (fig. 4 a).

The r-ALU is configured only during loading, not

at run time, so that PLD set-up slowness does not

affect performance: dedicated wires are fast and

avoid buses’ multiplexing overhead [5]. Although

2 ns gate delay PLDs have available
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commercially, PLDs might be slower than

traditional ALU technologies. This is more than

compensated by its micro parallelism and other

xputer features.

In computers control flow is the primary

activator (fig. 2 c): the instruction counter is the

control state register. The rate of control flow is

very high (control flow overhead): for each single

data manipulation action at least one preceding

control action is needed, which requires at least one

memory cycle each. If no emit address nor emit

data is used, additional control flow and even data

operations are needed for address computation

(addressing overhead).

Driven by the data sequencer, a hardwired data

address generator (fig. 2 b, instead of computers’

instruction sequencer: fig. 2a), xputers are data-

driven (fig. 2d). Let’s illustrate the role of this data

sequencer by the MoM xputer architecture example

featuring a 2-dimensional data address space (fig. 3

b - f). The MoM has 4 register files which we call

scan windows or scan caches (fig. 4 a), because

each such cache operates like a size-adjustable

window on the data memory (fig. 4 b). The

hardwired data sequencer provides a repertory of

generic data address sequences without any ad-

dressing overhead. Such an address sequence

makes a scan cache move through data memory

space, step by step, scanning a predefined 1- or 2-

dimensional segment of primary memory space

along a path, which we call a scan pattern.

Figures 3 b - d show examples of linear scan

patterns (step width / direction indicated by vector

(

 

∆

 

x,

 

∆

 

y): a relative jump). Fig. 3 e shows a video

scan pattern useful e. g. in 2-D filtering. Other scan

pattern examples (also see fig. 8) are: reflect, shift,

shuffle, butterfly etc. Also special scan patterns to

emulate systolic arrays, as well as data-dependent

scan patterns (e. g. for image preprocessing etc.),

are available in hardwired form (i. e. free of any

overhead) [6, 25]. For more about particular scan

patterns and their applications see [25, 6]. For a

textual scan pattern language see [28, 36]. For

stack-based hardware support of nested scan

patterns see [16].

Looking back at computers: their control flow

has only a single “scan pattern” (fig. 3 a, compare 3

b) scanning instructions one by one (as long as no

branch nor jump is encountered, which we consider

to be an escape from the scan). In contrast to those

of xputers this scan pattern is not free of overhead:

each step requires its own instruction fetch. Each

instruction fetch requires a memory access cycle.

This especially makes iterative operations

inefficient, since the same instruction is fetched

again and again. Looping instructions cause

additional control overhead and thus additional

memory access cycles. From this point of view it

is obvious, that the computer paradigm is

extremely overhead-prone, whereas the xputer

paradigm strongly tends to avoid most kinds of

overhead.

 

3. The Data Sequencing Paradigm

 

For high level programming of xputers we use a

simple model which we call data sequencing

paradigm, and, which will be illustrated here by 2

simple algorithm examples. The first example (a

systolic algorithm: fig. 5) is not a good one to

demonstrate the merits of xputers over vector

machines.

It has been selected for easy illustration of

the data sequencing paradigm. Fig. 5 a shows it

textually and fig 5 b its data dependence graph

(DG). From this DG the compiler derives: a data

map (fig. 5 c + 6 c), from this map (s. partial data

map in fig 6 a) a cache format spec (middle of fig.

6 b) and r-ALU subnet spec including wiring (left

side in fig. 6 b, derived from a single iteration in

fig. 6 a), and finally a scan pattern (arrows in fig.

6 c). At each step of a scan the r-ALU subnet

currently activated applies a read / modify / write

cycle to the cache(s) currently active. In our

example 8 steps (width = 2) are carried out (fig. 6

c shows initial and final cache locations).

 

Fine Granularity Scheduling.

 

 This first example

has illustrated the task of the innovative kind of

compilers needed for xputer [6, 36]: a kind of fine

granularity scheduling (or: ultra micro

scheduling) of data words, caches and rALU

subnets. This is fundamentally different from

sequentially piling up sequential code like

conventional compilers do it for computers. Later

in a section on xputer high performance features a

more detailed impression on this scheduling task

will be given.

 

3.1 Organization of Residual Control

 

At the end of the above data sequence example the

cache finds a tagged control word (TCW: fig. 6 c)

which then is decoded (right side in fig. 6 b) to

change the state of the residual control logic

(fig.4a) to select further actions of the xputer. This

sparse TCW insertion into data maps we call

sparse control. Note, that the control state changes



 

only after many data operations (driven by the data

sequencer). That’s why we use the term residual

control or sparse control for this philosophy. Note,

that xputer operation is data-driven so that TCWs

may be encountered only from within a data

sequence. A TCW decoder is defined at compile

time and configured as a subnet within the r-ALU.

Fig. 7 a illustrates distribution of the residual

control state between a scan state register (holding

scan pattern select code and parameters), an ALU

state register (holding subnet select code) and

residual control state register.

We define, that only conditional branching,

operator select and scan pattern select, but not

data addressing, are control actions. Thus during a

scan there is no control action: the data counter is

not a state register. But escape from a scan is a

control action (like in computers, see fig. 3 a).

Escapes are (fig. 7 a): normal escape (by end of

scan flag from data sequencer), delimiter escape

(on TCW encounter), off-limits escape (address

exceeds memory segment limits), conditional

branch escape (by decision data from r-ALU),

and, event escape (by external event flag). Upon
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off-limits escape, branch escape, or event escape a

remote control word (RCW) or remote address

word (RAW) is fetched from a remote memory

segment via an escape cache. A second decision

mechanism (implicit branching, because residual

control state is not affected) is activated only

within data-dependent scans (i. e. without escape:

curve following etc. [6, 25]). Such a data-

dependent scan may be exited by conditional

branch escape or off-limits escape.

To achieve xputer universality scan patterns

also non-generic scans and individual data

accessing are needed, implemented by list-directed

scan: next data address is read from a TAW (tagged

address word) within the data map or from a RAW

(in case of an escape). This list mode can be

entered directly during a scan upon TAW

encounter. If no TCW is found, a TAW does not

activate residual control. Reading addresses from

primary memory means addressing overhead, so

that list-driven sequencing is slower than

hardwired scan patterns. But also in this mode of

operation the xputer paradigm is still superior to

the computer paradigm.

 

3.2 I/O Data Sequencing 

 

Xputer I/O is simple: the scan-cache-based data

sequencing hardware (more details in fig. 4 c) is

linked to an I/O channel (fig. 4 d/e), which is more

powerful than DMA known from computers. The

data streaming in are not just downloaded into a

memory segment. Via a suitable scan pattern

selection, along with proper scan cache

adjustment, the data sequencer sets up a structured

data map already during input operation. Also

during output (fig. 4 e) data may be picked (by the

data sequencer) from memory in a structured way.

 

3.3 Highly Flexible Cost / Performance Ratio 

 

Xputer word lengths are compiler-defined: data

path, cache, and control words. Thus extensible

xputer architectures are feasible, upgradable by

inserting more PLDs into free r-ALU sockets and

more boards into free memory slots. E. g. it is easy

to design a VWL memory (Variable Word Length

Memory), where data word length could be

changed under software control to support VLDW

(very large data word) strategies for more

parallelism.

Figure 6 d/e shows the VLDW version of fig.

6 a-c. Instead of only a single iteration of the DG

this time the r-ALU subnet spec is derived from 4

iterations: the new version of the compound

operator (fig. 6 d) is 4 times as powerful. Its use

requires a vertical cache format (VLDW cache at

right side in fig. 6 d), where a single word holds

14 operands.The scan pattern is very short, so that

the 1-by-1 cache visits only 2 locations (fig. 6 e).

In total the number of primary memory semi-

cycles has been reduced from 41 to 2, so that a

speed-up by about a factor of 20 has been

obtained. This illustrates the extremely high

flexibility of the xputer paradigm with respect to

cost/performance trade-off.

 

3.4 Data Address Generator Hardware 

 

This section illustrates the address generator

operation. Fig. 9 a shows the structure of a stepper

unit. The MoM uses a twin stepper for (x, y)

addresses, providing a separate twin for each

cache. The address stepper generates linear

address sequences (A, A+

 

∆

 

A, A+2*

 

∆

 

A, ...)

between limits B and L (e.g.fig. 3 b,c,d). The B

stepper generates linear sequences B = (B0,

B0+

 

∆

 

B, ...) up to limit L and within F...C, to group

bursts of A sequences. L stepper operation is

 Figure 7: Xputer control principles; a) state distribution of residual control , b) comparison to other devices.
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independent of that of the B stepper. Fig. 9 b shows

a 2 cache example for a shuffle exchange scan,

where 2 steppers cooperate synchronously on the y

address only. A simple linear scan is applied to

cache no. 1, a 3-by-3 warped scan to cache no. 2,

where shuffling is controlled by equidistant B and

L slides within boundaries defined by F and C. 

 

4. Non-systolizable Algorithms 

 

The introductory application in fig. 5 / 6 has been a

systolic algorithm, being easy to convert into a data

sequencing scheme because of the locality of data

communication. In digital signal processing,

however, also non-systolizable algorithms are

very important. In contrast to parallel computer

systems and VLSI arrays, xputers smoothly

accept also non-systolic data sequencing schemes. 

Fig 8 shows such an algorithm (a 16 point

example constant geometry FFT). Fig. 8 a shows

the DG, including also non-local data

communication (also see fig. 8 c). Fig. 8 b

illustrates the ease of deriving a data map from

Figure 8: Non-systolizable algorithm example (FFT): a) dependency graph (DG), b) deriving a xputer data map, c) deriving 

a r-ALU configuration and cache assignment / size adjustment, d) r-ALU compound operator from c, e) detect end of scan 

pattern, f) deriving a VLDW implementation from fig. a, g) VLDW version data map, 

h) VLDW version r-ALU subnet specification.
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fig. 8 a. Fig. 8 c shows, how the r-ALU subnet spec

(fig. 8 d) and a 3 cache configuration are easily

derived from fig. 8 a: just take a single iteration

(spider-shaped). Fig. 8 b also shows initial and

final locations of the 3 caches being scanned in

parallel.

Also with non-systolizable algorithms a

VLDW strategy may be used. Figures 8 f-h

illustrate the VLDW version of the example from

fig. 8 a-e. Instead of a single spider (iteration) 4

adjacent “spiders” are picked from the DG

(compare fig. 8 f). Fig. 8 g shows the VLDW data

map holding 6 operands in a single very long data

word. Fig. 8 h shows the more powerful VLDW

version r-ALU subnet and its connections to the

scan caches. Compared to the above example this

VLDW version yields a speed-up factor of about 5.

Due to their high performance xputers may replace

specialized digital signal processors. Due to their

universality xputers may accelerate also any other

kind of parallel algorithms. For mass production

applications xputers may also be used in stand-

alone mode, so that no host is needed which

substantially reduces the total chip count.

 

5. Xputer High Performance Features

 

Having explained introductory sequencing

examples we may obtain deeper insight into

xputer performance issues more easily. Xputer

performance stems from a number of different

phenomena and concepts. Fig. 11 surveys the

most important mechanisms contributing to the

efficiency of parallel algorithm implementations

running on xputers, which will be discussed

throughout this chapter. Important roots of xputer

efficiency are: the r-ALU’s ultra micro

parallelism, the data sequencing paradigm, and,

the high flexibility of xputer memory interface

architecture. 

Much wider varieties of optimization

strategies than possible with computers can be

efficiently mapped onto this innovative

methodology. Compound operators’ ultra micro

parallel-ism reduces memory access by

substantially minimizing the number of stored

intermediate variables. Often the r-ALU’s flexible

data path width facilitates better utilization of r-

ALU space (e. g. see 2-D filtering example in next

 Figure 9: Address Generator: a) Block Structure, b) Snapshots of Shuffle Exchange Addressing Operation
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chapter). Dedicated intra-r-ALU interconnect

avoids using buses being slow and causing

multiplexing overhead [5]. 

The data sequencing paradigm obviously is

by far less over-head-prone, than the von Neumann

control flow paradigm. Control flow overhead is

almost completely avoided (also no instruction

fetch cycles are needed). The above examples have

demonstrated, that addressing overhead is

substantially reduced not only by hardwired

address generator (also see the pattern matching

example in next chapter). Not yet all mechanisms

of overhead reduction in xputer programs are well

understood: we propose basic research also

covering overhead mechanisms of the von

Neumann paradigm.

Now let’s look at memory bandwidth. We

may distinguish two kinds of factors: reduced

memory bandwidth requirements due to the xputer

paradigm, the r-ALU concept, and optimizing

compilers (see above), and, providing higher

memory bandwidth. Interface flexibility offers an

extremely wide variety of strategies (optimum data

maps) to meet the bandwidth requirements having

been left over, where the xputer scan cache model

is an important concept in finding such strategies.

Important means are wide memory data paths

(VLDW approaches, see above) supported by

VWL memories (Variable Word Length memories,

see above). 

More hardware features having been

developed for the MoM xputer [1, 16, 25] support

further reduction of memory access time. Special

access mode tags per cache word reduce the

number of memory semi cycles needed for cache

updating. For demonstration let’s see the cache

con-figuration in fig. 6 b: using a read-only tag for

words no.1-4, write-only tag for word no.6, and an

ignore tag for word no. 5, reduces the number of

semi cycles per scan step from 12 to 5. The MoM

cache mechanism also makes possible very high

hit rates in interleaved memory access utilization.

See example in fig. 6 c: if in a 4-phase interleaving

scheme the groups of all C[i], all D[i], all E[i], and

of all F[i] would be stored in separate memory

banks, the number of semi cycles for cache update

(see cache in fig. 6 b) would be further reduced

from 5 to 2 (total speed-up factor: 6).

In unit step sequencing of large caches

memory bandwidth bottlenecks can be reduced

(due to optimizing compiler strategies) by another

cache feature reducing repetitive access to

memory locations. The MoM 2-D cache hardware

also provides a multidirectional shift path,

separately for each dimension, such that, for

instance for e. g. a 4-by-4 cache in a video scan

(see example in fig. 13) the number of semi cycles

is reduced from 32 to 8 [25]. By combination of

this feature with interleaving the memory access

rate may be further reduced to 2 (total speed-up

factor: 16). Thus several relatively cheap

hardware features supporting optimization may

total up another order of magnitude of

acceleration.

Let’s revisit the implementation of parallel

algorithms by a second look at xputer

communication mechanisms - from a higher level

point of view. The highly parallel dedicated

combinational path between cache(s) and r-ALU

(fig. 10) is the basic communication mechanism

of xputers (also compare fig. 2 a). Single cache

use only supports local communication

 Figure 11: Influence factors contributing to Xputer Efficiency - compared to those of Computers
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(systolizable algorithms only), such as e. g.

between a data subarray [i] and subarray [i+1] (fig.

10 a) by overlapping cache positioning. Multiple

cache use may also support global communication

between different data arrays (fig. 10 b) or between

distant subarrays. Also comparing acceleration

factors in lines no. 4 and 5 within the table in fig. 1

shows, that here multiple-cache solutions tend to be

much more efficient. Like cache memories of

computers, scan caches in xputers help to reduce

performance degradation due to the memory access

bottleneck. It is obvious that xputer cache use is

fully deterministic, due to a data scheduling

strategy being completely compiler-driven.

That’s why a much larger variety of

optimization strategies may be applied, in contrast

to computers permitting only probabilistic

strategies which yield only low hit rates. By xputer

cache use, however, extraordinarily high hit rates

may be achieved, since cache traffic can be

scheduled very precisely in detail to the optimum,

tailored to any particular sequencing problem. This

is because xputer hardware accepts almost any

optimized schedule which always provides the

right data at the right location at the right time. Thus

compilation for xputers is a kind of very high level

synthesis, where the number of visits to data

locations in memory is minimized. This has

similarities to the travelling salesman problem,

where space-to-time mapping derived from systolic

array synthesis methodology is an important

method [18, 21].

 

6. Xputers in Image Processing

 

Xputers are especially well suitable for image

preprocessing, so that no specialized and much

more expensive image processing computers are

needed. Due to its universality also other kinds of

parallel algorithms may be accelerated by the

same xputer, and, in mass product applications

stand-alone xputer use substantially reduces the

total chip count. In image preprocessing

systolizable algorithms (mainly using simple scan

patterns, see fig. 3 e, f) and methods using data-

dependent scan patterns are dominating. This

section illustrates xputer use here by electronics

design automation examples having been

implemented at Kaiserslautern, where integrated

circuit layout uses data structures being quite

similar to those, well known from image

preprocessing. 

 

6.1 Two-dimensional digital filtering

 

Fig. 12 shows a 2-D digital filtering example

implemented at Kaiserslautern: a systolic

algorithm example in image preprocessing. A

video scan pattern (fig. 12 b) is used to move a 3-

by-3-sized single scan cache, which at each

location recomputes the center pixel c4, by an

expression shown in fig. 12 a. The cache map in

fig. 12 a shows integer weight distribution. The r-

ALU subnet (fig. 12 c) is derived from the local

DG in fig. 12 a. Although including 18 arithmetic

functions this compound function is purely

combinational and fits on a small fraction of a

Figure 12: Xputers in image preprocessing: 2-dimensional filtering example. a) filtering expression and cache map of 

weights, b) scan pattern example, c) r-ALU subnet derived from DG in fig. a.
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single 5128 chip (last line in fig. 1) - due to the

extraordinarily efficient minimization made

possible by the high flexibility of xputer r-ALUs.

Since xputer data path width is not hardwired a low

path width (e. g. 8 bits for the adders in fig. 12) may

save PLD space. Multiplication by 1 saves a

multiplier entirely. In case of binary coded integers

multiplication by 2 or 4 (see fig. 12) may be

replaced by a shift left by 1 bit, or, by 2 bits,

respectively. All this demonstrates xputers’ high

acceptance of a wide variety of optimization

strategies. Further minimization yields from

memory accessing strategies, possible with

xputers only. On-cache shift paths (compare fig.

13 c for 4-by-4 example) minimize the number of

memory access cycles needed to 1 per word and

video scan per line. Combined with suitable

memory interleaving this may total up to an order

of magnitude (see section 5 for explanations).

 

6.2 Pattern Matching Applications on Xputers

 

We use pattern matching examples to illustrate

image preprocessing capabilities of xputers, such

as applicable also to integrated circuit layout

Figure 13: Image preprocessing method used for grid-based design rule check: a) scan pattern and cache size, b) reference 

pattern examples (poly-to-poly distance ≥ 2), c) on-cache shift paths to minimize memory access
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verification and routing using grid-based design

rules [24, 23]. A DRC may be carried out by a finite

state machine [12] or combinational logic [31].

Such algorithms run very fast on ASIC hardware

which, however, have to be reimplemented for

changed design rules and for portation. Due to very

large primary memories modern work stations also

conventional software implementation is feasible

which, however, is very inefficient because of

sequential processing of the very large number of

reference patterns. But to measure acceleration

factors such implementations are needed. The

MoM-DE environment with tools like a reference

pattern generator and the PISA [31] package

facilitate comparative performance measurement

by convenient gene-ration of such pattern matching

algorithms (fig. 15). In contrast to computers, here

the performance of xputers is competitive to ASIC

solutions. E. g. for a grid-based design rule check

(DRC) the MoM xputer has been programmed

such, that a single video scan over the layout is

sufficient (fig. 13 a). Substantial acceleration is

obtained also for other kinds of grid-based layout

processing, such as Lee routing [1, 6], ERC

(electrical rules check [2]), compaction [8], fault

extraction [9], etc. Reference patterns are

configured combinationally into the r-ALU as a

single very powerful compound function linked

with a video scan sequence within a 2-

dimensional bit map memory segment. A single

read-modify-write data loop is performed per

cache location without using decision data (figure

13 a). Experimental results in grid-based DRC

with 4-by-4 cache are acceleration factors of up to

2000 (CMOS design rules [17]).

The extremely high acceleration factor is due

to mainly two reasons: all (hundreds of) reference

patterns (fig. 13 d) are bundled by a huge

compound Boolean operator (massive ultra micro

parallelism) and caching completely avoids

addressing overhead (an analysis of the VAX

version of this algorithm has shown about 90%

CPU time for addressing). Also MoM on-cache

shift and access mode flag features (fig. 13 c, also

see section 5) contribute to the high performance

by minimized storage access time.

Figure 15: Block structure of the MoM-DE development environment
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Figure 16: Xputer alternatives: a/b) programmable xputer, c) specialized xputer, d) embedded xputer ASIC (exASIC), e) ex-

ASIC with embedded memory, f) compared to computer technology. 
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Also the Lee routing algorithm [19, 20, 22] is

an image preprocessing example. But this time

data-dependent scan patterns are dominating, such

as e. g. in curve following: decision data from the r-

ALU influence data sequencer operation telling to

which nearest neighbour location to go next (fig. 14

b,d,f). In Lee routing the cache (size 3-by-3) first

performs a spiral scan around the start cell S,

propagating a wavefront around S (fig. 14 a) until

the target T is found (fig. 14 c). This is an example

of a data-dependent scan pattern (compare fig. 14

b). When T has been found, a (hardwired) data-

driven escape is started (fig. 14 d) after switching

cache size to 1-by-1 and activating another rALU

subnet. Back-tracking from T (fig. 14 f) generates

the wire (fig. 14 e). Also this scan pattern is exited

by a data-driven escape (conditional branch, see

last line in fig. 14 f). Note, that also the data-

dependent scan patterns are hardwired, which

prevents address computation overhead by direct r-

ALU / sequencer interaction. For the Lee algorithm

(160 reference patterns) an acceleration factor >160

has been achieved.

 

6.3 Application Development Support

 

MoM-DE, the MoM application development

environment is running on a host (a 

 

µ

 

VAX [26])

featuring a self-explanatory syntax-driven editor

for a high level language MoPL (Map-oriented

Programming Language), roughly a Pascal

extension (fig. 15). MoPL sources are accepted by

the MoMpiler the “code generator” of which

includes a commercial PLD programming tool

needed for r-ALU personalization. 

MoPL includes a sublanguage PaDL, which

efficiently supports pattern matching applications

in general. An optimizing reference pattern

generator has been implemented [31], which

accepts VLSI layout design rules [1]. Fig. 13 b

shows an example: 10 reference patterns needed to

detect the violation of minimum poly-to-poly

separation by 2 lambda. For inclusion of other kinds

of pattern matching applications an interactive

graphic pattern editor has been implemented [36]

for easy editing, modification, inspection and

surveying of sets of reference patterns.

 

7. Embedding and Technology Issues 

 

The most common PLD application is hardware

prototyping. But recently an innovative kind of

PLD use has been commercialized: ASIC

emulation from netlist sources [29, 30]: replacing

simulation since being a more efficient way of

ASIC verification. In contrast to xputers,

however, ASIC emulation does not provide a new

design paradigm: the netlist is imported: the result

of a separate (conventional) hardware design

process. Xputers have a programming paradigm: a

very high level model of parallel algorithms.

Running an implementation on an xputer is

execution - but not emulation. Since for some

PLDs also compatible gate arrays are available

commercially (e. g. by Plessey): xputer machine

code may be directly submitted for fabrication.

That’s why the xputer paradigm may be

considered to be an alternative high level

synthesis approach to ASIC design [6] - more

precisely: very high level synthesis. ASIC

emulation nor simulation is needed, since direct

execution is available for design verification. Fig.

16 gives a survey, which illustrates different

degrees of embedding customized xputers and

compares it to computers. 

Partitioning large r-ALUs. To avoid

communication bandwidth problems, cache(s)

and r-ALU should be on the same chip (fig. 16 b /

c). If for “large” applications or for VLDW

approaches more than a single PLD chip is needed

for the r-ALU, also more expensive inter-chip

wiring is needed - in addition to the very efficient

intra-chip wiring. This is rather a packaging issue

of than a performance issue, since still primary

memory access remains the only critical

bottleneck. In implementing several such “large

 Figure 17: Illustrating partitioning schemes for applications needing very large (multi-chip) r-ALUs
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algorithms” we have experienced, that we could

always find heuristically a clever partitioning

scheme, e. g. by slicing caches into multi-bit slices

and distributing the compound operator such, that

only loose coupling is required between chips (fig.

17).

 

8. Conclusions

 

With xputers an innovative computational machine

paradigm has been introduced and implemented

which achieves for parallel algorithms (also non-

systolizable ones) drastically much better

performance and hardware utilization and

drastically more (compiler-) optimizer-friendliness

than the von Neumann paradigm (comparative

summary: fig. 18). Acceleration factors up to more

than 2000 have been obtained experimentally with

a simple monoprocessor. For many applications

xputers may outperform large parallel computer

systems or ASIC solutions. Due to convenient

conversion into a gate array the xputer also

provides an alternative ASIC design methodology. 

Xputers fit well to image preprocessing and

digital signal processing, so that often special DSP

processors or expensive special image processing

computers are not needed. Due to xputer

universality also other kinds of parallel algorithms

and glue software may run on the same xputer, and,

in mass product applications a stand-alone use is

possible, which substantially reduces the total chip

count (compare fig. 16). For xputer architectures an

extremely low amount of specific hardware is

needed, not being performance-critical, so that it’s

easy to keep up with technology.

An exciting new R&D scene has been opened

up: immature, thus promising and challenging. Not

really a new theory, but a new mix of backgrounds

is needed, derived from languages, compilation,

algorithms and applications. Not yet all phenomena

are well understood which contribute to the high

acceleration factors found experimentally. We need

a new direction of (very) high level synthesis, a new

direction in hardware / software performance

evaluation redefining the notion of overhead, and, a

data-sequencing-oriented new direction of

research in programming languages.
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