(%]

Reconfigurable Processor Architectures for Mobile Phones

Martin Vorbach

PACT XPP Technologies AG
Muthmannstr. 1
D-80939 Munich, Germany
martin.vorbach@pactcorp.com

Abstract

This paper describes a new dynamically Configurable
System-on-Chip (CSoC) concept and integration, consisting
of an ARM7 EJS processor-core, a coarse-grain 4x4 XPP-
array from PACT XPP Technologies AG, and application-
tailored global/local memory topology with efficient Amba-
based communication interfaces. The system and introduced
CSoC architecture is optimized for mobile communication
algorithm scenario. The paper gives an overview on the
overall system concept, the hardware datapath structures
and their integration as well as discussing some selected ap-
plication implementation results within this target area.

1 Introduction and Motivation

Systems-on-Chip (SoCs) has become reality now, driven
by fast development of CMOS VLSI technologies. Com-
plex system integration onto one single die introduce a set
of various challenges and perspectives for industrial and
academic institutions. Important issues to be addressed here
are¢ cost-effective technologies, efficient and application-
tailored hardware/software architectures, and correspond-
ing IP-based EDA methods. Due to exponential increasing
CMOS mask costs, essential aspects for the industry are
now flexibility and adaptivity of SoCs. Thus, in addition to
ASIC-based, one new promising type of SoC architecture
template is recognized by several academic [2] [16] [17]
[18] [19] [20] and first commercial versions [4] [5] [6] [8]
[10] [11] [13]: Configurable SoCs (CSoCs), consisting of
processor-, memory-, probably ASIC-cores, and on-chip
reconfigurable hardware parts for customization to a partic-
ular application. CSoCs combine the advantages of both:
ASIC-based SoCs and multichip-board development using
standard components [3].

Jiirgen Becker
Universitaet Karlsruhe (TH)

Institut fuer Technik der Informationsverarbeitung

D-76128 Karlsruhe, Germany
becker@itiv.uni-karlsruhe.de

This contribution provides the description of a CSoC
project, integrating the dynamically reconfigurable
eXtreme Processing Platform (XPP) from PACT [10] [11],
[12] (see figure 3). The XPP architecture realizes a new
runtime re-configurable data processing technology that
replaces the concept of instruction sequencing by configu-
ration sequencing with high performance application areas
envisioned from embedded signal processing to co-process-
ing in different DSP-like application environments.
The adaptive reconfigurable data processing architecture
consist of following components:
* Processing Array Elements (PAEs), organized

as Processing Arrays (PAs),
* a packet oriented communication network,
« a hierarchical Configuration Manager (CM)

tree, and
« aset of YO modules.

This supports the execution of multiple data flow applica-
tions running in parallel. A PA together with one low level
CM is referred as PAC (Processing Array Cluster). The low
level CM is responsible for writing configuration data into
the configurable objects of the PA. Typically, more than
one PAC is used to build a complete XPP device, Doing so,
additional CMs are introduced for configuration data han-
dling. With an increasing number of PACs on a device, the
configuration hardware assumes the structure of a tree of
CMs. The root CM of the tree is called the supervising CM
or SCM. This unit is usually connected to an external or
global RAM.

The basic concept consists of replacing the Von-Neumann
instruction stream by automatic configuration sequencing
and by processing data streams instead of single machine
words, similar to [1]. Due to the XPP’s high regularity, a
high level compiler can extract instruction level parallelism
and pipelining that is implicitly contained in algorithms

Figure 1: XPP System Integration - Overview

[12]. The XPP can be used in several ficlds, e.g. as image/
video processing, encryption, and baseband processing of
next generation wireless standards, e.g. to realize also Soft-
ware Radio approaches. 3G systems, i.c. based on the
UMTS standard, will be defined to provide a transmission
scheme which is highly flexible and adaptable to new ser-
vices. Relative to GSM, UMTS and IS-95 will require
intensive layer 1 related operations, which cannot be per-
formed on today’s processors [14] [15]. Thus, an optimized
HW/SW partitioning of these computation-intensive tasks
is necessary, whereas the flexibility to adapt to changing
standards and different operation modes (different ser-
vices, QoS, BER, etc.) has to be considered. Therefore,
selected computation-intensive signal processing tasks
have to be migrated from software to hardware implemen-
tation, e. g. to ASIC or coarse-grain reconfigurable hard-
ware parts, like the XPP architecture.

2 XPP-based CSoC Architecture

Our CSoC architecture (figure 2) consists of a 4x4 XPP-
core from PACT, one ARM7 EJS processor-core, and dif-
ferent memory modules and interfaces. The main commu-
nication bus is chosen to be the AHB from ARM. The size
of the XPP architecture will be 16 ALU-PAESs, a 4x4-array,
To get an efficient coupling of the XPP architecture to
AHB, suitable AHB-bridges are implemented which con-
nects IO-interfaces of the XPP to the AHB bussystem.

The processor on the introduced CSoC version is a ARM7
EJS core. Additional modules can easily be added using
the on-chip AMBA AHB/APB busses, whereas local mem-
ory modules on the CSoC is used to store the ARM pro-
grams, data for XPP computation and XPP configurations.
The bandwidth of the AHB bus system can be scaled, ¢.g.
dependent on the required throughput the clock frequency
is variable from 25-100Mhz ain order to reduce the power
consumption in an optimized way. The interface of the
memory modules to the AHB is realized as a slave. That’s
because this module is a passive module only and can not
start any kind of transactions on the AHB. Moreover, there
will be external RAM interfaces implemented, which
allows to connect external memory to the CSoC. In figure
2 the general concept for the Amba-based interface integra-
tion of the ARM/XPP/Memory modules is shown. In addi-
tion the ARM7 EIS and the XPP have accesses to private
ROM/SRAM memories (not shown in figure 2), which
reduces the traffic on the multilayer Amba-bussystem and
provides more concurrency in the overal data transfer pat-
tems. Each of the parallel operating high-throughput
bridges connecting the different ARM/XPP/Memory mod-
ules can achieve a high and variable data throughput,
which is sufficient for multimedia-based applications like
MPEG-4 algorithms applied to video data in PAL-standard
format (see section 4).

The communication between the CSoC and the outside
world could be realized throught a master/slave AHB/PCI
host bridge. The AHB master ability admits the direct
transfers from PCI to internal RAM without involvement
of the ARMT7 EJS processor.

SRR

Figure 2: AMBA AHB to CM Interface structure

3 eXtreme Processing Platform - XPP

The XPP architecture is based on a hierarchical array of
coarse-grain, adaptive computing elements called Process-
ing Array Elements (PAEs) and a packet-oriented commu-
nication network. The strength of the XPP technology
originates from the combination of array processing with
unique, powerful run-time reconfiguration mechanisms.
Since configuration control is distributed over several Con-
Siguration Managers (CMs) embedded in the array, PAEs
can be configured rapidly in parallel while neighboring
PAEs are processing data. Entire applications can be con-
figured and run independently on different parts of the
array. Reconfiguration is triggered externally or even by
special event signals originating within the array, enabling
self-reconfiguring designs. By utilizing protocols imple-
mented in hardware, data and event packets are used to
process, generate, decompose and merge streams of data.
The XPP has some similarities with other coarse-grain
reconfigurable architectures like the KressArray [21] or
Raw Machines [22] which are specifically for stream-
based applications. XPP's main distinguishing featurcs are
its automatic packet-handling mechanisms and sophisti-
cated hierarchical configuration protocols.

U
walmm-

;&asummman
U
0y by ¥
0 N SN R
C LR

e
B
I
CL R L L
TRl i Ll
O
.
B B R BN R

3.1 Array Structure

An XPP device contains one or several Processing Array
Clusters (PACs), i.e. rectangular blocks of PAEs. Each
PAC is attached to a CM responsible for writing configura-
tion data into the configurable objects of the PAC. Multi-
PAC devices contain additional CMs for configuration data
handling, forming a hierarchical tree of CMs. The root CM
is called the supervising CM or SCM. The XPP architec-
ture is also designed for cascading multiple devices in a
multi-chip. A CM consists of a state machine and internal
RAM for configuration caching. The PAC itself contains a
configuration bus which connects the CM with PAEs and
other configurable objects. Horizontal busses carry data
and events. They can be segmented by configurable
switch-objects, and connected to PAEs and special 1/O
objects at the periphery of the device.

A PAE is a collection of PAE objects. The typical PAE
shown in figure 3 contains a BREG object (back registers)
and an FREG object (forward registers) which are used for
vertical routing, as well as an ALU object which performs
the actual computations. The ALU object's internal struc-
turc is shown on the bottom left-hand side of the figure.
The ALU implemented performs common fixed-point

|
i

Hiht

LCOOCO0L0CaG
THTIES

i

Input Register
FREG-Core

ut R

=i |

FREG
Object

Figure 3: XPP64 Architecture Overview and Structure of one ALU PAE module

Frequency = 100 MHz

DCTE8 (10
blocks) 1648 FIR {400
samples)

258-pant FFT

Figure 4: Energy Consumption Benchmarks Comparison of XPP16 and DSP Processor

arithmetical and logical operations as well as several spe-
cial three-input opcodes like multiply-add, sort, and
counters. Events generated by ALU objects depend on
ALU results or exceptions, very similar to the state flags of
a classical microprocessor, A counter, .g., generates a spe-
cial event only after it has terminated. The next section
explains how these events are used. Another PAE object
implemented in the prototype is a memory object which
can be used in FIFO mode or as RAM for lookup tables,
intermediate results etc. However, any PAE object func-
tionality can be included in the XPP architecture.

3.2 Packet Handling and Synchronization

PAE objects as defined above communicate via a packet-
oriented network. Two types of packets are sent through
the array: data packets and event packets. Data packets
have a uniform bit width specific to the device type.

In normal operation mode, PAE objects are self-synchro-
nizing. An operation is performed as soon as all necessary
data input packets are available. The results are forwarded
as soon as they are available, provided the previous results
have been consumed. Thus it is possible to map a signal-

flow graph directly to ALU objects, and to pipeline input
data streams through it. The communication system is
designed to transmit one packet per cycle. Hardware pro-
tocols ensure that no packets are lost, even in the case of
pipeline stalls or during the configuration process. This
simplifies application development considerably. No
explicit scheduling of operations is required. Event packets
are one bit wide. They transmit state information which
controls ALU execution and packet generation. For
instance, they can be used to control the merging of data-
streams or to deliberately discard data packets. Thus condi-
tional computations depending on the results of earlier
ALU operations are feasible. Events can even trigger a
self-reconfiguration of the device as explained below.

3.3 Configuration

The XPP architecture is optimized for rapid and user trans-
parent configuration. For this purpose, the configuration
managers in the CM tree operate independently, and there-
fore are able to configure their respective parts of the array
in parallel. Every PAE stores locally its current configura-
tion state, i.e. if it is part of a configuration or not (states

configured“or ,free*). If a configuration is requested by
the supervising CM, the configuration data traverses the
hierarchical CM tree to the leaf CMs which load the con-
figurations onto the array. The leaf CM locally synchro-
nizes with the PAEs in the PAC it configures. Once a PAE
is configured, it changes its state to ,,configured*. This pre-
vents the respective CM from reconfiguring a PAE which
is still used by another application. The CM caches the
configuration data in its internal RAM until the required
PAEs become available. Hence the CMs' cache memory
and the distributed configuration state in the array enables
the leaf CMs to configure their respective PACs indepen-
dently. No global synchronization is necessary.

While loading a configuration, all PAESs start to compute
their part of the application as soon as they are in state
wconfigured". Partially configured applications are able to
process data without loss of packets. This concurrency of
configuration and computation hides configuration latency.
Additionally, a prefetching mechanism is used. Afier a
configuration is loaded onto the array, the next configura-
tion may already be requested and cached in the low-level
CMs" internal RAM. Thus it need not be requested all the
way from the SCM down to the array when PAEs become
available.

SMeXPP Application
Processor |
Performance 2000 MIPS 500 MIPS
MACs " %
Power <04 mWMHz 0,5 - 0,8 MMz
Frequency 52 MHz 208 Mz
Battery Lifetime >4x i
On Chip Memory 4meit 6 MBs
Off Chip Memory oms 168
WMo PP Applcation]
Processor
orformence 2000 MIPS 500 MIPS
Chip Cost 4.8 6..8
External Memory 0 16...32M8
st s 0 8..10
Package <1000 >200 1O
Package Cost .1 :
Cost Benefit A1..13 0 ?

Figure 5: Technical and Commer-
cial Trade-offs of SMeXPP CsoC

4 Mobile Communication Application
- Examples Discussion -

PACT did in the year 2000 a first evaluation board based
on (.25 pm technology for their XPP 128 chips. Based
thercupon, promising performance results compared to a
parallel VLIW type DSP of Texas Instruments were
obtained, [10], [11].

Within the application area of future mobile phones desired
and important functionalities are gaming, video compres-
sion for multimedia messaging, polyphone sound (MIDI),
etc. Therefore, a flexible, low cost hardware platform with
low power consumption is needed for realizing neccesary
computation-intensive algorithms parts. Thus, PACT
implemented several of these functionalities onto the cost-
efficient 4x4 XPP array size, e.g. a 256-point FFT, a real
16 tap FIR filter, and a video 2d DCT (8x8) for MPEG-4
systems. The last functionality will be discussed here. The
energy consumption benchmarks comparisons between an
XPP16 architecture and a state-of-the-art DSP Processor
tor the above mentioned funtionalities are given in figure
4. The SMeXPP combination of ARM-7 EJS and XPP with
efficient RAM-topology promises also a high boost in per-
formance and flexibility. The technical and commercial
trade-offs of this SMeXPP solution is shown in figure 5.
First digital TV application performance results were
obtained by evaluating corresponding MPEG-4 algorithm
mappings onto the introduced ARM/XPP CSoC and based
on the 0.13 pm CMOS technology synthesis results. Based
on this coarse-grain CSoC version, performance/cost
results of an MPEG-4 application is currently under imple-

= Header Huffmao- De- Inverse
Deteder i Decader fuantixation oer
Prediction. DC Coeflicients
Decuder
oer
Metion > >
Vectors

Motiem
Campensstion)

P-Frame

Figure 6: Main MPEG-4 Algorithm Modules

mentation, whereas the Inverse DCT (see figure 6) applicd
to 8x8 pixel blocks can be performed by an 4x4 XPP-Array
in 74 clock cycles. Since the IDCT is one of the most com-
plex operations in MPEG-4 algorithms, the preliminary
clock frequency of 100 Mhz based on 0.13 pm CMOS
technology integration is sufficient for this real-time digital
TV application scenario,

5 Conclusions

The paper described the dynamically reconfigurable
XPP architecture and coarse-grain hardware structures. The
focus was given to its Configurable System-on-Chip
(CSoC) integration concept, whereas an ARM7 EJS proces-
sor-core, a coarse-grain 4x4 XPP-array from PACT XPP
Technologies AG, and application-tailored global/local
memory topologies are interfaced with efficient Amba-
based communication structures. The hardware/sofiware
system and introduced SMeXPP CSoC architecture is opti-
mized for mobile communication algorithm scenario. The
paper has given an overview on the overall system concept,
the hardware datapath structures and their integration as
well as discussing some selected application performance
results within the area of mobile phones, e.g. the implemen-
tation discussion of a video 2d DCT (8x8) in MPEG-4 sys-
tems suitable for mobile multimedia messaging. From the
explained technical and commercial trade-offs such a
SMeXPP solution is outperforming traditional processor-
based approaches, e.g. from performance, cost and risk
minimization aspects.

6 References

[1] R. W. Hartenstein, J. Becker et al.: A Novel Machine Para-
digm to Accelerate Scientific Computing: Special issue on
Scientific Computing of Computer Science and Informatics
Journal, Computer Society of India, 1996,

[2] J. Becker, T. Pionteck, C. Habermann, M. Glesner; Design
and Implementation of a Coarse-Grained Dynamically
Reconfigurable Hardware Architecture; in: Proc. of IEEE
Computer Society Annual Workshop on VLSI (WVLSI
2001), Orlando, Florida, USA, April 19-20, 2001

[3] J. Becker (Invited Tutorial): Configurable Systems-on-Chip
(CSoC); in: Proc. of 9 Proc. of XV Brazilian Symposium on
Integrated Circuit Design (SBCCI 2002), Porto Alegre,
Brazil, September 5-9, 2002

[4] Xilinx Corp.: http://www.xilinx.com/products/virtex.htm.

[5] Altera Corp.: http:/fwww.altera.com

[6] Triscend Inc.: httpz/www.triscend.com

[7] Triscend A7 Configurable System-on-Chip Platform - Data

Sheet http:/iwww.triscend.com/products/
dsa7csoc_summary.pdf

[8] LucentWeb] http://www.lucent.com/micro/fpga/
191 Atmel Corp.: http:/fwww.atmel.com
[10] PACT Carporation: hitp://www,pactcorp.com

[11] The XPP Communication System, PACT Corporation, Tech-
nical Report 15, 2000

[12] V. Baumgarte, F. Mayr, A, Niickel, M. Vorbach, M. Wein-
hardt: PACT XPP - A Self-Reconfigurable Data Processing
Architecture; The 1st Int’l, Conference of Engineering of Re-
configurable Systems and Algorithms (ERSA01), Las Ve-
gas, NV, June 2001

[13] Hitachi Semiconductor: http://semiconductor. hitachi.com/
news/triscend himl

[14] Peter Jung, Joerg Plechinger., “M-GOLD: a multimode bas-
band platform for future mobile terminals”,CTMC'99, IEEE
International Conference on Communications, Vancouver,
June 1999,

[15] Jan M. Rabaey: System Design at Universities: Experiences
and Challenges; IEEE Computer Society International Con-
ference on Microelectronic Systems Education (MSE'99),
July 19-21, Arlington VA, USA

[16] S. Copen Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cad-
ambi, R, R. Taylor, R. Laufer "PipeRench: a Coprocessor for
Streaming Multimedia Acceleration" in ISCA 1999.
hitp:/iwww.ece.cmu.edw/research/piperench/

[17] MIT Reinventing Computing: http://www.ai.mit.edu/
projects/transit dpga_prototype_documents. html

[18] N. Bagherzadeh, F. J. Kurdahi, H. Singh, G. Lu, M. Lee: "De-
sign and Implementation of the MorphoSys Reconfigurable
Computing Processor "; J. of VLSI and Signal Processing-
Systems for Signal, Image and Video Technology, 3/ 2000

[19] Hui Zhang, Vandana Prabhu, Varghese George, Marlene
Wan, Martin Benes, Arthur Abnous, "A 1V Heterogencous
Reconfigurable Processor IC for Baseband Wireless Applica-
tions", Proc. of ISSCC2000.

[20] Pleiades Group: http://bwre.eecs.berkeley edu/Research/
Configurable_Architectures/

[21] R. Hartenstein, R. Kress, and H. Reinig. A new FPGA archi-
tecture for word-oriented datapaths. In Proc, FPL'94, Prague,
Czech Republic, September 1994. Springer LNCS 849.

[22] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V.
Lee, J. Kim, M. Frank, and P. Finch. Baring it all to software:

Raw machines, [EEE Computer, pages 86-93, September
1997 :

23] ARM Corp.: http://www.arm.com/arm/AMBA

